S+

Advancing Scientific Development with Collaborations

15+ FDA grants and \$5M+ in funding & new feature developments since 2014

Ongoing FDA Collaborations

/	1
	J

Long-Acting Injectibles

Validating *IVIVC* methods for LAIs by enhancing PBPK models to predict formulation behavior, supporting generic drug development.

Virtual Bioequivalence

Establishing best practices for conducting virtual BE using GastroPlus[®].

Oral Modified-Release Tablets

Developing a digital-twin of the tiny-TIMsg *in vitro* system to predict MR formulation PK accross multiple strength using PBPK-based IVIVE.

Dermal PBPK Model

Develop and validate a dermal PBPK tool to predict formulation evolution during application, addressing challenges like solvent evaporation and permeability enhancers, by enhancing the TCAT[™] model.

Locally-Acting in GI Tract

Develop PBPK models to predict local GI concentrations and establish IVIVR/IVIVC, linking local and systemic exposure for patients with gastrointestinal pathologies, where plasma concentration alone is insufficient.

Pulmonary Absorption

Predict and enhance the PCAT[™] model to include pathophysiologies and develop an IVIVR for lung permeability.

Oral Cavity Route

Develop an *in silico* modeling platform informed by dynamic *in vitro* oral cavity permeability data to establish biowaivers for oral cavity drug products.

2024 Achievements

Ophthalmic Products

Applying the OCAT[™] model to predict human eye pharmacokinetics and pharmacodynamics, leveraging preclinical data to support bioequivalence (BE) evaluations.

🧭 Dermal Drug Products

Using PBPK models to predict skin permeation and and support the BE assessment of dermal drug products in patients.

NEW! Grants & Collaborations

From Bench to Bioequivalence: *In vitro* Mechanistic Understanding of Amorphous Solid Dispersions (ASD) Drug Products in Simulated Gastrointestinal Conditions.

Partner With Us

simulations-plus.com/about/partners-and-collaborators

