T0930-04-22

MECHANISTIC IN VITRO ORAL ABSORPTION MODEL TO PREDICT MUCOSAL PERMEABILITY OF ORAL CAVITY DRUG PRODUCTS

Pauletti², Haiying Zhou¹

¹Simulations Plus, Inc. Lancaster, CA.² Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO. ³Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD.

PURPOSE

- delivery allows patient compliance, ease of drug Buccal administration and potential bypass of first-pass metabolism
- Evaluation of buccal mucosal permeability may provide insights on the fraction absorbed in the oral cavity impacting the pharmacokinetic (PK) of drug products (DPs) delivered intraorally (IO)
- A mechanistic in silico model was developed and validated in MembranePlus[™] software (beta version, Simulations Plus Inc., Lancaster, CA) to deconvolute EpiOral[™] in vitro permeability into drug diffusivity (D_m) and unbound fraction (f_{ut}) within the oral mucosa.
- This study compares predicted D_m and $f_{\mu\nu}$ for five DPs and their APIs, revealing formulation-driven differences in oral mucosal permeability.
- This work enables in vitro to in vivo translation for IO absorption using physiologically based pharmacokinetic modelling (PBPK) framework.

OBJECTIVES

- Compare the predicted D_m and f_{ut} to analyze the effect of excipients on drug permeation
- Identify tissue thickness as primary source of inter-batch variability in EpiOral[™] tissue model for the evaluated drugs

METHOD

- In vitro permeability assays were conducted using the organotypic EpiOral[™] tissue model (ORL-200, MatTek Corp., Ashland, MA) (cf. Poster **# M1430-01-06**)
- The mechanistic in silico model (Figure 1) describes the drug diffusion through the tissue layers of EpiOral[™] tissue model. It also includes other mechanisms: protein binding in the media, drug accumulation in tissue and receiver compartments, non-specific drug loss, and media depletion due to sampling
- D_m and f_{ut} in the EpiOralTM tissue were compared for the drug (powder form) and the drug product to access excipient effect:
 - Buprenorphine HCI API / Generic Buprenorphine HCI DP
 - Fentanyl Citrate API / Fentora®
 - Sufentanil Citrate API / Dsuvia®
 - Rizatriptan Benzoate API / Generic Rizatriptan Benzoate DP
 - Zolpidem Tartrate API / Edluar®

Figure 1: Visual representation of the EpiOral[™] in silico model.

Priyata Kalra¹, Viera Lukacova¹, Pankaj Dwivedi², Khondoker Alam³, Eleftheria Tsakalozou³, Giovanni

CONTACT INFORMATION: priyata.kalra@simulations-plus.com

RESULTS

(740-8650 uM).

concentration of 8069 uM (API) and 7319 uM (DP) and tissue thickness of 120 um was used.

SimulationsPlus

UHSP