Predicting dose-dependent fraction absorbed via a mechanistic absorption model and machine learning

Michael S. Lawless, David Miller, and Robert Fraczkiewicz Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, USA

REFERENCES

Paper ID: 4092869 Poster Board #: 416

²ADMET Predictor 11.0, Simulations Plus, Inc. Lancaster CA. ³ Zrazil B et al. Nucleic Acids Research, 2024, 52, D1, D1180-D1192,

- ¹ GastroPlus 9.9, Simulations Plus, Inc. Lancaster CA.
-
- [https://doi.org/10.1093/nar/gkad1004.](https://doi.org/10.1093/nar/gkad1004)
- ⁴ Amidon GL et al. Pharm Res. 1998, Mar;12(3):413-20.
- Drug dissolution and absorption are crucial in oral drug delivery
- The Advanced Compartmental Absorption and Transit (ACAT^{IM}) model¹ mechanistically estimates the percent of dose (%Fa) absorbed into the gut wall • ADMET Predictor^{®2} ANNE models are used to predict inputs parameters of the
- ACAT model
- 978 structures of orally delivered drugs were downloaded from the ChEMBL database³
- %Fa was predicted for 1, 10, 100, and 1000 mg immediate release tablets
- The Biopharmaceutical Classification System⁴ (BCS) was used to help analyze dose dependency

Figure 1 – The drug can transition between solid (undissolved) and solution (dissolved) phases. The precipitation model follows first-order kinetics with a 25 µm particle size and a mean precipitation time of 900 seconds. Note that the impact of transporters was not included in this study. If present, transporters can also cause dose dependency.

Figure 2 - BCS classes for 5 drugs at 4 doses (1, 10, 100, and 1000 mg). Increasing the dose will move the point to the right and can change the BCS class.

Oral drug dataset

- Queried ChEMBL for approved, small molecule drugs on March 1, 2024 • Downloaded ChEMBL ID, SMILES, name, oral, and prodrug fields; 3,312 SMILES downloaded
- Removed duplicates, non-oral drugs, and prodrugs • 978 remained

Figure 3 - Plots of %Fa for 10 (left), 100 (middle), and 1000 (right) mg dose versus 1 mg dose. The points are colored by BCS class for the 1000 mg dose. Off-diagonal elements indicate dose dependency. Note, that the only off-diagonal elements are BCS classes II and IV, i.e., low solubility. Thus, low solubility is an important factor in dose dependency.

Predicted Properties

- ANNE models were used to predict inputs from the 2D structure of the drug
- ACAT input parameters are native aqueous solubility (S+Sw), pKa (S+pKa), salt solubility factor (SolFactor), human jejunal permeability (S+Peff), logP (S+logP), and fasted simulated intestinal fluid solubility (S+FaSSIF)

BCS

- Classifies compounds based on low or high permeability and dose number
- Permeability is based on S+Peff with a 0.5×10^{-4} cm/s cutoff
- The dose number (ml) is the dose (mg) divided by intrinsic solubility (higher numbers have lower solubility) and the cutoff is 250 ml

- BCS class IV drug at all dose amounts
- The drug is indicated for irritable bowel syndrome, so it is beneficial for the compound to stay in the gastrointestinal tract
	- Recommended dose is 50 mg and yields a predicted %Fa of 17%

-
- %Fa depends on an interplay between pKa, logD, solubility, and permeability • BCS classes I and III do not exhibit dose dependency
- BCS classes II and IV exhibit dose dependency, indicating that low solubility is the main contributing factor

• BCS I at 1 mg dose and class II at higher doses Large drop in the percent dissolved and absorbed from the two lower doses to the two higher doses • Illustrates the importance of selecting the optimal dose to balance dissolution and absorption