

S+ A SIMULATIONS PLUS COMPANY

QST Applications, Use of Data and Species Differences

Christina Battista, PhD Scientist II

19 August 2020

*DILIsym[®], NAFLDsym[®], MITOsym[®], ADMET Predictor[®], GastroPlus[®] and SimPops[®] are registered trademarks, and SimCohorts[™], IPFsym[™], and RENAsym[™] are trademarks, of DILIsym Services Inc. and/or SLP for computer modeling software and for consulting services.

QST Applications, Use of Data and Species Differences

DILIsym Overview

Case Study 1

Case Study 2

Summary

DILISYM OVERVIEW

DILIsymServices

QST Applications, Use of Data and Species Differences

DILIsym Overview

Case Study 1

Case Study 2

Summary

Disclaimer: DILIsym Services are developed and provided as an educational tool based on assessment of the current scientific and clinical information, and accepted approaches for drug safety and efficacy. The resultant data, suggestions, and conclusions ("Guidelines") should not be considered inclusive of all proper approaches or methods, and they cannot guarantee any specific outcome, nor establish a standard of care. These Guidelines are not intended to dictate the treatment of any particular patient. Patient care and treatment decisions should always be based on the independent medical judgment of health care providers, given each patient's individual clinical circumstances.

DILIsym Software Overview

DILIsym Overview

- Case Study 1
- Case Study 2
- Summary

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented
- Essential cellular processes represented to multiple scales in interacting sub-models
- <u>Over 70</u> detailed representations of optimization or validation compounds with 80% success
- Single and <u>combination</u> <u>drug</u> therapies

DILIsymServices

QST Applications, Use of Data and Species Differences

DILIsym Overview

Case Study 1

Case Study

Summary

Assess Compound X and Compound Y

CASE STUDY 1

DILIsymServices

DILIsym Overview

Case Study 1

Case Study 2

Summary

Case Study 1: Assess Compound X and Compound Y

- The primary goal of this simulation work was to:
 - quantitatively and mechanistically assess the liver toxicity potential of Compound X and Compound Y combining clinical and mechanistic *in vitro* data with DILIsym and GastroPlus software simulations of previous or prospective clinical dosing paradigms.

Saying "I do" to the QSAR / PBPK / QST marriage...

QST Applications, Use of Data and Species Differences

DILIsym Overview

Case Study 1

Case Study 2

Summary

DILIsymServices

GastroPlus PBPK Model Used to Predict Liver Exposure of Compound Y and Compound X

QST Applications, Use of Data and Species Differences

DILIsym Overview

Case Study 1

Case Study 2

Summary

- Data on Compound Y and Compound X pharmacokinetics not available in the literature
 - In vitro data on liver distribution available from intracellular data collected for this project
- Structure of each compound available online
 - QSAR modeling using ADMET Predictor and GastroPlus provided the best possible estimate of Compound Y and Compound X distribution and pharmacokinetics
- Plasma time course was estimated in GastroPlus and translated into DILIsym
- Both compounds distribute significantly into the liver

DILIsymServices

Example PBPK Representation: Compound Y at the Clinical Dose

- GastroPlus predictions for liver and plasma at clinical dose shown at right
 - PBPK model specific predictions shown below
 - Dose escalation was simulated

QST Applications, Use of Data and Species Differences

DILIsym Overview

Case Study 1

Case Study 2

Summary

Simulation Results

DILlsymServices

Example Toxicity Data: Compound Y *In Vitro* Data

QST Applications, Use of Data and Species Differences

DILIsym Overview

Case Study 1

Case Study 2

Summary

- DILIsym collaborates with 3rd party providers to collect *in vitro* data relating compounds to mechanisms of toxicity
 - Cyprotex for mitochondrial toxicity and oxidative stress
 - Solvo for transporter inhibition
- Compound-specific toxicity parameters estimated by simulating *in vitro* data

Preclinical Data and Simulation Results

DILIsymServices

OST

Application

s. Use of

Data

and Species

Differences

Overview

Case Study 1

SimPops Results Show Compound X and Compound Y to be Safe at Clinical Doses

- Simulations conducted in human simulated population (SimPops, n=285)
- Neither Compound Y nor Compound X are predicted to cause toxicity at the highest clinical dose (1X dose)
- Both Compound Y and Compound X are predicted to cause mild ALT elevations at supratherapeutic doses (5x, 10X of highest clinical dose)
 - No bilirubin elevations or Hy's Law cases occurred in simulations with Compound X
 - 2 Hy's Law cases occurred at 10x clinical dose simulations with Compound Y

Compound	Dosing Protocol	Simulated* ALT > 3X ULN**
	1X Dose, 12 weeks	0% (0/285)
Compound V	2X Dose, 12 weeks	0% (0/285)
Compound f	5X Dose, 12 weeks	0.3% (1/285)
	10X Dose, 12 weeks	10.2% (29/285)
Compound X	1X Dose, 15 days	0% (0/285)
	2X Dose, 15 days	0% (0/285)
	5X Dose, 15 days	1.1% (3/285)
	10X Dose, 15 days	11.6% (33/285)

*The full v4A-1 SimPops (n=285) of normal healthy volunteers was used ^{**}Upper limit of normal (ULN) in DILIsym is 40 U/L

DILIsymServices

SH A SIMULATIONS PLUS COMPANY

Simulation Results

30

HUMANS

Case Study 1: Summary

QST Applications, Use of Data and Species Differences

٠

٠

- DILIsym Overview
- Case Study 1

Case Study 2

Summary

- ADMET Predictor™ and GastroPlus™ software, along with *in vitro* data, was used to construct PBPK representations to predict liver exposures for both compounds
- DILIsym parameters were successfully calculated from *in vitro* data for both compounds
- SimPops results show Compound X and Compound Y to be safe at projected clinical doses
- ALT elevations predicted within DILIsym at higher doses for both compounds
- SimPops results suggest that neither compound is likely to cause severe liver injury
- Phase IIb / III clinical trial results have subsequently confirmed the predictions for Compound Y

DILIsymServices

QST Applications, Use of Data and Species Differences

DILIsym Overview

Case Study

Case Study 2

Summary

Investigate observed species differences in DILI

CASE STUDY 2

DILIsymServices

Case Study 2: Investigating Rat vs. Human CKA DILI

- The primary goal of this simulation work was to:
 - investigate whether the mechanisms of toxicity represented in DILIsym can account for the observed species differences (rat DILI vs. human no DILI)

TOXICOLOGICAL SCIENCES, 166(1), 2018, 123–130

doi: 10.1093/toxsci/kfy191 Advance Access Publication Date: July 30, 2018 Research Article

Using Quantitative Systems Toxicology to Investigate Observed Species Differences in CKA-Mediated Hepatotoxicity

Christina Battista,^{*,†} Kyunghee Yang,^{*} Simone H. Stahl,[‡] Jerome T. Mettetal,[§] Paul B. Watkins,[†] Scott Q. Siler,^{*} and Brett A. Howell^{*,1,2}

Christina Battista, ", † Kyunghee Yang, * Simone H. Stahl, * Jerome T. Mettetal, § Paul B. Watkins, † Scott Q. Siler, * and Brett A. Howell *, 1,2

Hepatotoxicity

DILIsymServices

SH A SIMULATIONS PLUS COMPANY

DILIsym Overview

Case Study 1

Case Study 2

Summary

In Vitro Data Informed Mechanisms of Toxicity for Rats and Humans

ullet

۲

DILIsym Overview

Case Study 1

Case Study 2

Summary

Toxicity parameter values identified for CKA interaction with all three mechanisms of toxicity

- Most data are species-specific

Predicted hepatotoxicity highly dependent on placing these data in the context of *in vivo* exposure

Table 1. Toxicity Parameters for Human and Rat

	Human	Rat
Bile acid transporter inhibition co	onstant (µM)	
BSEP	94 ^a	129.7 ^b
MRP3	11.2	11.2 ^c
MRP4	12.3	12.3 ^c
NTCP	19.5	19.5 ^c
Mitochondrial toxicity constant (mM)	
ETC inhibition constant	14.2	1.42
ROS production constant (mL/mo	ol/h)	
ROS production constant	7278	9705

^aData from Astra Zeneca (unpublished). ^bFrom Ulloa et al (2013).

^cAssumed to be the same as human.

Battista 2018

Preclinical Data and Simulation Results

DILIsymServices

Applications, Use of Data and Species Differences

QST

DILIsym Overview

Case Study 1

Case Study 2

Summary

SimPops Results Recapitulate Rat but No/Minimal Human Hepatotoxicity

DILlsymServices

SH A SIMULATIONS PLUS COMPANY

- CKA simulations conducted in rat and human SimPops (n=294, n=285)
 - Different dosing protocols simulated in species-specific PBPK models
- CKA induced hepatotoxicity in simulated rats but not humans, consistent with data

Table 2. Summary of CKA-Mediated Hepatotoxicity in Rat and Human SimPops and Preclinical and Clinical Observations

	Species	Rat	Rat	Human	Human	Human	
6			Simu	lations ^a			
č	Dose	200 mg/kg	500 mg/kg	300 mg	600 mg	900 mg	
B	Population size	n = 294	n = 294	n = 285	n = 285	n = 285	
Ø	ALT $>$ 3 \times ULN (%) ^b	2.4	36.4	0	0	0	
ח	ALT $>$ 5 \times ULN (%) ^b	0	20.1	0	0	0	
⊑	ALT $> 10 \times$ ULN (%) ^b	0	7.8	0	0	0	
S			Preclinical/clinical trials				
	Dose	200 mg/kg	500 mg/kg	300 mg	600 mg	900 mg	
	Population size	n = 8	n = 4	n = 5	n = 4	n = 6	
ផ	ALT $>$ 3 \times ULN (%) ^b	25	75	0	0	16.7	
ອ	$ALT > 5 \times ULN (\%)^{b}$	0	50	0	0	0	
	$ALT > 10 \times ULN (\%)^{b}$	0	25	0	0	0	

^aHuman simulations were run for 96 h, rat simulations for 72 h.

^bUpper limit of normal (ULN) was 30 U/L in rat simulations and preclinical trials. ULN was 40 U/L in human simulations and clinical trials.

Battista 2018

RATS

HUMANS

35

Mechanistic Investigations Reveal Main Driver of Hepatotoxicity

- Simulations conducted in rat SimPops using a single mechanism of toxicity
- Mitochondrial mechanism alone could account for CKA hepatotoxicity
- Combination of oxidative stress and transporter inhibition mechanisms absent mitochondrial mechanism were insufficient to account for CKA hepatotoxicity

Simulation Results

QST

Applications,

Use of Data

and Species

Differences

DILIsymServices

Battista 2018

RATS

Case Study 2: Summary

- Species-specific data can be used to identify toxicity parameter values for preclinical species
- SimPops results reproduced rat but no/minimal human hepatotoxicity
- Investigative simulations implicated mitochondrial toxicity as a key driver of response
- Results support the application of QST modeling to interpret preclinical liver signals

DILIsymServices

SH A SIMULATIONS PLUS COMPANY

•

DILIsym Overview

Case Study 1

Case Study 2

Summary

QST Applications, Use of Data and Species Differences

DILIsym Overview

Case Study 1

Case Study 2

Summary

DILIsymServices

QST Applications, Use of Data and Species Differences

DILIsym Overview

Case Study 1

Case Study 2

Summary

Summary

- Simulations Plus software can be used to predict chemical properties and exposure in a simulated population based on chemical structure alone
- DILIsym software can utilize exposure predictions and *in vitro* data to predict hepatotoxicity risk before compounds have been tested clinically
 - Can also provide insight into safety margins for dose selection
 - DILIsym has been shown to distinguish toxicity between species for a given compound

The DILIsym Services Team

Zackary Kenz, PhD Scientist II

Christina Battista, PhD Scientist II

躵

Lisl Shoda, PhD Principal Scientist Director of Immunology

QUESTIONS?

DILIsymServices

BACKUPS

DILIsymServices

Compound X PBPK Representation Calculated at Predicted Clinical Dose

- GastroPlus predictions for liver and plasma at clinical dose shown at right
 - PBPK model specific predictions shown below
 - Dose escalation and alternate protocols were also simulated

0.9

Compound

CONFIDENTIAL

Simulation Results

DILIsymServices

Mitochondrial Toxicity Parameters Determined for Compound Y and Compound X

- Parameter values were fit to mitochondrial data for Compound Y and Compound X
 - Electron transport chain inhibition for Compound Y
 - Both electron transport chain inhibition and uncoupling for Compound X
 - 24 hour data used
- MITOsym and D
 Cyprotex meterize both compounds

			1 8 8 1	
DILIsym Parameter		Compoun d Y Value	Compound X Value	Units
Coefficient for ETC inhibition	on 1	38,000	Not used	μΜ
Coefficient for ETC Inhibition	on 3	0.1	4,200	μΜ
Max inhibitory effect for I inhibition 3	TC	0.2	0.4 (max effect)	dimensionless
Uncoupler 1 effect Km		No effect	15,000	μΜ
Uncoupler 1 effect Vma	х	No effect	22	dimensionless
Uncoupler 1 effect Hill		No effect	4	dimensionless

Preclinical Data and Simulation Results

CONFIDENTIAL

DILIsymServices

Oxidative Stress Parameters Determined for Compound Y and Compound X

- Parameter values were fit to 24-hour ROS data for Compound Y . and Compound X
- DILIsym representation of *in vitro* environment used to ٠ parameterize both compounds

DILIsym Parameter	Compound Y Value	Compound X Value	Units
RNS/ROS production rate constant 1	3.4 x 10 ⁻⁴	1.7 x 10 ⁻⁴	mL/nmol/hr

1

10

Intracellular concentration (uM)

1000

100

0.1

0.01

DILIsymServices

S+ A SIMULATIONS PLUS COMPANY

Preclinical Data and

Simulation Results

Compound Y Weakly Inhibits BSEP; Compound X Does Not

- Compound Y is a low-potency inhibitor of BSEP
 - Compound Y also inhibits MRP4 transport (not shown)
- Compound X does not inhibit BSEP
 - No changes to V_{max} or K_{m} of transporters observed over course of assay
 - Compound X inhibits MRP4 transport (not shown)

Preclinical Data

CONFIDENTIAL

DILIsymServices

DILIsym Toxicity Parameters for Compound Y and X

	Mechanism	Parameter Unit		DILIsym P Unit Val	
				Compound Y	Compound X
	Mitochondrial Dysfunction	Coefficient for ETC inhibition 1	μΜ	38,000	Not used
		Coefficient for ETC Inhibition 3	μΜ	0.1	4,200
		Max inhibitory effect for ETC inhibition 3	dimensionless	0.2	0.4
		Uncoupler 1 effect Km	μΜ	No effect	15,000
		Uncoupler 1 effect Vmax	dimensionless	No effect	22
		Uncoupler 1 effect Hill	dimensionless	No effect	4
	Oxidative Stress	RNS/ROS production rate constant 1	mL/nmol/hr	3.4 x 10 ⁻⁴	1.7 x 10 ⁻⁴
	Bile Acid Transporter Inhibition a	BSEP inhibition constant	μΜ	140	No inhibition
		BSEP inhibition alpha value	dimensionless	0.6	No inhibition
*Values shown in the table for DILIsym input pa simulations that have predictive and insightful v.		NTCP inhibition constant	μΜ	No inhibition	No inhibition
		MRP4 inhibition constant	μM	40	75

DILIsymServices

SimPops Results Show Lack of Severe Liver Injury for Both Compound Y and Compound X at Clinical Doses

CONFIDENTIAL

DILIsymServices

Comparison with Competitors Suggests Compound X Has a Differentiated Liver Safety Profile

Simulation Results

CONFIDENTIAL

DILIsymServices

Comparison with Compound Y Competitor Suggests Comparable Liver Safety Profile

Simulation Results

CONFIDENTIAL

DILIsymServices