

Application of PBK Modeling and (Q)IVIVE for Prioritization of Chemicals for Toxicity Testing

Xiaoqing (Shaw-ching) Chang Inotiv, Morrisville, NC Contractor supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) Xiaoqing.chang@inotivco.com

> SimulationPlus MIDD+ 2023 Conference February 16, 2023

Disclaimer

I declare that I have no conflict of interest. The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of Inotiv or NICEATM.

Outline

- Current trend of chemical safety evaluations
 - Replacement of in vivo studies with in vitro assays
- NICEATM
 - To promote the application of new approach methodologies
- PB(P)K model and (Q)IVIVE
 - To put in vitro data into in vivo context
 - Key components
 - Case studies

Promote Use of NAMs for Chemical Safety Evaluation

- New Approach Methodologies (NAMs)
 - In vitro tests, in chemico assays and in silico models
 - Promote the "3Rs" (reduce, refine, replace)
 - Can provide mechanistic-based, more human-relevant information
 - Can be high throughput
- Goals/Challenges
 - To relate in vitro data to in vivo outcomes
 - Acceptance into regulatory decision making
- Possible approaches
 - (Q)IVIVE: in vitro to in vivo extrapolation

NICEATM

About NICEATM

The NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) is an NTP office focused on the development and evaluation of alternatives to animal use for chemical safety testing. The topics in this section provide information about approaches used to replace, reduce, or refine animal use while ensuring that the toxic potential of substances is appropriately characterized

CONTACT NICEATM

- NICEATM RESOURCES

U.S. Roadmap The U.S. Roadmap guides stakeholders seeking to develop or promote use of novel approaches to assessment. Learn more about this resource. Go »

Toxicology Computational toxicology studies

use computer models to better understand and predict toxic effects. Read about NICEATM computational toxicology projects and resources. Go »

Evaluations ICCVAM and NICEATM have

evaluated approaches for replacing and reducing animal use, and ICCVAM has issued recommendations, Read more, Go»

Accepted Alternative

NICEATM has compiled a list of

accepted by U.S. agencies. Read

alternative methods already

Methods

more. Go »

Test Method

3Rs Meetings, Workshops & Webinars

NICEATM organizes meetings and workshops related to the 3Rs. Browse lists of events organized by NICEATM and collaborators. Go»

NICEATM News

- NICEATM and ICCVAM presentations at SOT 2023
 - ICCVAM Communities of Practice webinar on anchoring biological relevance January 30
 - · Slides and video available from October symposium on NAMs for population variability and susceptibility
 - Slides and video available from 2022 SACATM meeting
 - Strategic Roadmap Subscribe to NICEATM News
 - email list 12

Related Links

12

- Funding Opportunities for Test Method Developers
- ICCVAM 2020-2021 Biennial Progress Report
- ICE: Integrated Chemical Environment
- Ontology Resources for Environmental Health Sciences

NICEATM: the National Toxicology Program (NTP) Interagency Center for the Evaluation of **Alternative Toxicological Methods**

Focuses on developing and evaluating data from alternative test methods

Provides operational and scientific support to Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM)

Provides information through its website

https://ntp.niehs.nih.gov/whatwestudy/niceatm/index.html

ICCVAM (Interagency Coordinating Committee on the Validation of Alternative Methods). https://dx.doi.org/10.22427/NTP-ICCVAM-ROADMAP2018

ICCVAM Strategic Roadmap for Establishing New Approaches

- To connect end users (e.g., regulators, industry) with the developer of NAMs
 - End-users help guide the development of the alternative methods
- To establish confidence in new methods
 - Use efficient and flexible approaches
- To ensure adoption of new methods by both federal agencies and industry

In Vitro to In Vivo Extrapolation (IVIVE) Relevant Publications

Chang X, et al. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. Toxics 2022, 10(5), 232

7

Clarification of the "IVIVE" Terminology

Broadly defined: an approach utilizing in vitro experimental data to predict in vivo phenomena or outcomes (e.g., exposure, effects)

IVIVE of ADME parameters

E.g., scaling from in vitro metabolic clearance to hepatic clearance

		In vitro CL _{int}	Scaling factors (MPGGL, HPGL)	CL _{int} /g liver	Liver weight	Hepatic CL _{int}	
--	--	-------------------------------	----------------------------------	----------------------------	--------------	------------------------------	--

ADME: absorption, distribution, metabolism, and exposure MPPGL: microsomal protein per gram of liver HPGL: hepatocellularity per gram of liver

Chang X, et al. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. Toxics 2022, 10(5), 232

IVIVE of Dosimetry: Makes In Vitro Assay Results Human Relevant

To apply PK/TK models to translate the in vitro activity concentration (AC_x) to an in vivo exposure that would lead to an internal (blood or tissue) concentration equal to the AC_x

Chang X, et al. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. Toxics 2022, 10(5), 232

Forward versus Reverse Dosimetry

Reverse Dosimetry for (Q)IVIVE

Linear Extrapolation Assumption

$$EAD_{X} = In Vitro AC_{X} * \frac{1 mg/kg/dose}{Cplasma_{1}}$$

EAD: Equivalent administrated dose ACx: activity concentration at x% of maximum response *Cplasma:* plasma concentration, Css or Cmax

How is (Q)IVIVE Carried Out?

Sources of Variability

• • • • • • • • • • •

Case study 1: Using VPA and its analogues to demonstrate how (Q)IVIVE can be applied to predict in vivo toxicity exposure

Birth Defects

- Data & Statistics on birth defects
 - Affect approximately 3% of all babies born in the United States each year (CDC, 2020)
 - Many of birth defects are caused by in utero exposure to various pharmaceutical and environmental chemicals (Weinhold B, 2009)
 - Faster and cheaper methods are required for large-scale screening
- Example Chemicals: valproic acid (VPA) and its 9 analogues
 - VPA is anti-convulsant and anti-epileptic drug
 - VPA is well known to be teratogenic in humans and animals (Ornoy A, 2009).
 - Short-chain aliphatic acids

Stemina devTOX quickPredict (devTOX^{qP}) Assay

- A biomarker-based human pluripotent stem cell assay for developmental toxicity screening (Palmer JA et al. 2017)
- Measured changes in secreted and consumed metabolites in spent medium after chemical exposure
- Ornithine (o) & Cystine (c)
 - Involved in metabolic pathways critical for cell proliferation and differentiation during embryonic and fetal development
 - o/c Ratio as predictive of developmental toxicity potential

Interpreting devTOX^{qP} Assay **Dose Response Data**

- Viability and o/c ratio are function of chemical exposure
 - Identify exposure level that alters metabolism •
 - Developmental Toxicity Threshold (dTT)
 - Developmental Toxicity Potential (dTP) concentration
 - Toxicity Potential (TP) concentration (Cytotoxic)

17

Correlation between In Vitro and In Vivo Assays

 The devTOX^{qP} Assay Results are concordant with available in vivo mammalian potency data

Analogue (Preferred Name)	CAS	Structure	Molecular Weight	devTOX ^{qP} dTP (μM)	dTP _{Analogue} dTP _{VPA}	<i>In Vivo</i> Potency ^a
Valproic acid (VPA)	99-66-1	С	144.21	236	1.0	+++ ^{1,2,3}
2-Ethylhexanoic acid (2EHA)	149-57-5	OH 0	144.21	399	1.7	+4
2-Propylheptanoic acid (2PHA)	31080-39-4	, il or	172.26	546	2.3	+++ ¹
2-Propyl-4-pentenoic acid (4-ene-VPA)	1575-72-0	Сн	142.20	695	2.9	++ ^{1,2,3}
2,2-Dimethylvaleric acid (2,2DVA)	1185-39-3	С	130.18	784	3.3	_2,3
4-Pentenoic acid (4PA)	591-80-0	ОН	100.12	913	3.9	_2,3
2-Methylhexanoic acid (2MHA)	4536-23-6	0 OH	130.18	976	4.1	-
2-Ethylbutyric acid (2EBA)	88-09-5	ОН	116.16	1,071	4.5	_2,3

°Potency relative to VPA based on results in the NMRI exencephaly-mouse model using decision criteria in Eike ND: Not Determined

18

Selected PK/PBPK Modeling Tools

Types	Examples	Pros	Cons
Commercial PBPK building software	GastroPlus / SimCyp / PKSim	Ready to use, allowing for more complex modeling, e.g., non-linear kinetics	Costly, not transparent, not designed for reverse dosimetry
Commercial modeling software	Matlab / Berkeley Madonna / acslX	Flexibility, better transparent	Costly, steep learning curve
Open-source modeling software	R language	Open source, transparent, flexibility	Learning curve
Open-source modeling package	<u>High throughput toxicokinetic</u> (HTTK) R package https://cran.r- project.org/package=httk	Open source, transparent, environmental chemicals	Learning curve
Read to use, open- access web tool	Integrated Chemical Environment (ICE) <u>https://ice.ntp.niehs.nih.gov/</u>	Open source, transparent, user-friendly interface	Limited flexibility

PK/PBPK Models for (Q)IVIVE

Impact of Different PK Models on IVIVE: Compared to <u>Rat</u>LELs

(e): using experimental Clint values(p): using predicted Clint values from QSAR model

Httk.PBTK: PBTK model in httk R package (v1.8)

PPK: population-based PK model

LEL: lowest effect level from in vivo rat developmental toxicity study

Pregnancy-specific PBPK Models for IVIVE

C HTTK human gestational dose model (HTTK.fPBTK) (Kapraun et al., <u>https://doi.org/10.1016/j.reprotox.2022.09.004</u>)

BW, body weight; CL, clearance; CLint, intrinsic clearance; GFR, glomerular filtration rate; I.V., intravenous injection; Q, blood flow rate; ACAT, advanced compartmental absorption and transit model; V, volume

D GastroPlus[™] Pregnancy PBPK model

Impact of Different PK/PBPK Models on IVIVE: <u>Human</u> Data

Mass Balance Model for Predicting Chemical Distribution in In Vitro Assay System

Factors influencing the fraction of test chemical in cells:

- In vitro assay specific parameters
- Cell number
- Incubation temperature
- Percentage fetal bovine serum (% FBS) –
- Well-volume
- Head space

- Chemical specific parameters
- Octanol-water partition coefficient (K_{ow})
 Air-water partition coefficient
 - Air-water partition coefficient

Free Medium Concentration Predicted from Mass Balance Model

Chemical	Nominal Conc. (uM)	Free Conc.	Ratio: Free vs Nominal Conc.
2-Ethylhexanoic acid	100	47.8	0.48
Valproic acid	100	43.0	0.43
2,2-Dimethylvaleric acid	100	54.2	0.54
Hexanoic acid	100	78.6	0.79
2-propylpent-4-enoic acid	100	80.1	0.80
2-Propylheptanoic acid	100	22.7	0.23
2-Methylhexanoic acid	100	61.6	0.62
4-Pentenoic acid	100	98.3	0.98
2-Ethylbutyric acid	100	83.5	0.83
2-Methylpentanoic acid	100	81.4	0.81

IVIVE Adjustment Using In Vitro Kinetic Model: Human Data

Summary of VPA IVIVE Study

- The EAD estimates for the VPA analogues based on different PK/PBPK models were quantitatively similar to in vivo data for both rats and humans
- The variations on EADs using different types of PK/PBPK models for IVIVE are within expected ranges
 - For rat, the Httk.PBTK model provided the most accurate overall predictions for the rat developmental toxicity LELs
 - For human, GastroPlus pregnancy model with maternal plasma Cmax as target internal concentration provides the most conservative estimation
- Impact of in vitro kinetics on EAD estimates is chemical-dependent

Case study 2: QIVIVE to Facilitate Evaluation of Herbicides for Genotoxic Activity Using In Vitro Assays

Stephanie SR, et al. Evaluation of the Herbicide Glyphosate, (Aminomethyl)phosphonic Acid, and Glyphosate-Based Formulations for Genotoxic Activity Using In Vitro Assays. Environmental and Molecular Mutagenesis (Accepted)

Reverse Dosimetry for (Q)IVIVE

Non-linear Extrapolation

Chang X, et al. IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making. Toxics 2022, 10(5), 232

Predicted Cmax at Multiple External Doses Using GastroPlus Model

Aminomethylphosphonic acid		GI	lyphosate		Metolachlor		
	Dose (mg/kg/day)	Cmax (uM)		Dose (mg/kg/day)	Cmax (uM)	Dose (mg/kg/day)	Cmax (uM)
	1	1.25		1	1.44	1	1.16
	2	2.50		3	4.12	2	2.25
	4	4.99		7	10.30	8	7.78
	8	9.98		14	20.59	16	13.36
	16	19.97		29	41.19	32	20.41
	32	39.93		57	82.37	57	27.02
	71	89.14		86	123.56	86	31.62
	143	178.28		114	164.74	114	33.43
	714	891.40		286	411.85	286	37.52
	1429	1029.11		714	1029.64	714	40.34
	2857	2058.30		1429	1636.69	1429	42.04
	5714	4116.52		2143	2455.03	2857	43.57
	8571	6174.73		5714	6324.26	7143	45.42
	11429	8232.77		8571	7944.38	8571	45.76
	13896	10000.18		11429	8914.20	11429	46.30
	14286	10270.36		14286	9597.63	14286	46.71
	plasma Cmax (Aminomethylphosphonic acid)		1	plasma Cmax (Glyphosate) 12000.00 10000.00 y = -5E-05x² + 1.3228x + 0.6457 R² = 0.999		plasma Cmax	(Metolachlor)
	10000 00 y = 0.7157x + 4	y = 0./15/x + 4/.921				50.00	
	R ² = 0.999		Cmax (uM)	8000.00 6000.00			
	4000.00			2000.00		y = 5	.0621ln(x) + 2.9161 R ² = 0.9328
	. 0 5000	10000 15000		0 2000 4000 6000	8000 10000 12000 14000 16000	0 5000	10000 15000
	Dose (mg/kg/day)			Dose	(mg/kg/day)	Dos	se (mg/kg/day)

EAD Comparison Between Using GastroPlus and HTTK PBK Models

	ACC or Top Testing Conc.	GastroPlus EAD	Httk EAD
Chemicals	(uM)	(mg/kg/day)	(mg/kg/day)
Aminomethylphosphonic acid	10000	13895.7	871.8
Glyphosate	10000	15968.0	1357.0
Metolachlor	159	1.08E+13	121.7

Stephanie SR, et al. Evaluation of the Herbicide Glyphosate, (Aminomethyl)phosphonic Acid, and Glyphosate-Based Formulations for Genotoxic Activity Using In Vitro Assays. Environmental and Molecular Mutagenesis (Accepted)

Take Home Message

- (Q)IVIVE
 - Putting in vitro toxicity data into in vivo setting
 - Promotes use and acceptance of NAMs in risk assessment
 - Promising results with using in vitro assay that are mechanistic relevant to in vivo outcomes
- Extrapolation with linear assumption between external exposure and plasma concentration
 - Provides a more conservative estimate for human risk assessment
- Challenges
 - Variability and uncertainty
- Future opportunities

Acknowledgments

https://github.com/kmansouri/OPERA

Xiaoqing.chang@inotivco.com