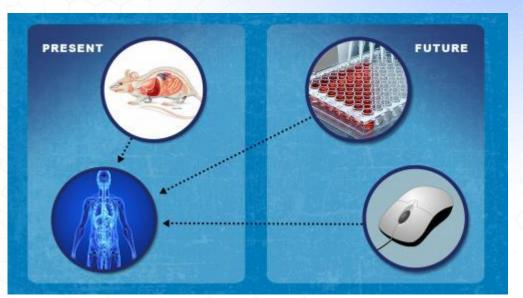

S+ SimulationsPlus

An Introduction to Mathematical Modeling in Drug Development using GastroPlus[®] and DILlsym[®] Celeste Vallejo, Ph.D.

Agenda

- Introduction to drug development
- Introduction to physiologically-based pharmacokinetic (PBPK) modeling
 - GastroPlus Demo
- Introduction to quantitative systems pharmacology/toxicology (QSP/QST) modeling
 - DILIsym Demo

Drug Development Pipeline



Matthews, Holly & Hanison, James & Nirmalan, Niroshini. (2016). "Omics"-Informed Drug and Biomarker Discovery: Opportunities, Challenges and Future Perspectives. Proteomes. 4. 28. 10.33905PG of eomes4030028.

FDA Modernization Act 2.0

- Signed into law in December 2022
- The Federal Food, Drug, and Cosmetics Act of 1938 mandated animal testing on all new drug products
- With the new law, new drugs are no longer required to be tested on animals before human studies.
- Drug developers may start relying more heavily on modeling and simulation as it uses less resources than an animal study

Broad Classes of Models Used in Drug Development

Pharmacokinetic (PK)/ Pharmacodynamic (PD)

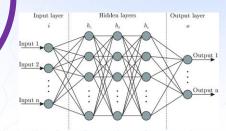
> Ke0 central effect ke12 peripheral effect

PD

Blussé van Oud-Alblas et al. 2019

Simplistic representation of the human body into a small number of compartments to model drug disposition and drug action

Utilize systems of differential equations

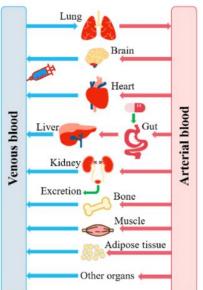

> Mechanistic representation of drug action

Physiological representation of the human body to model drug disposition Physiologically Based Pharmacokinetic (PBPK)

> Non-linear, nonmechanis'tic model that uses features of the compound to protect its ADMA Exercise Muscle Other organs 2

Quantitative Systems Pharmacology (QSP) or Toxicology (QST)

Machine learning

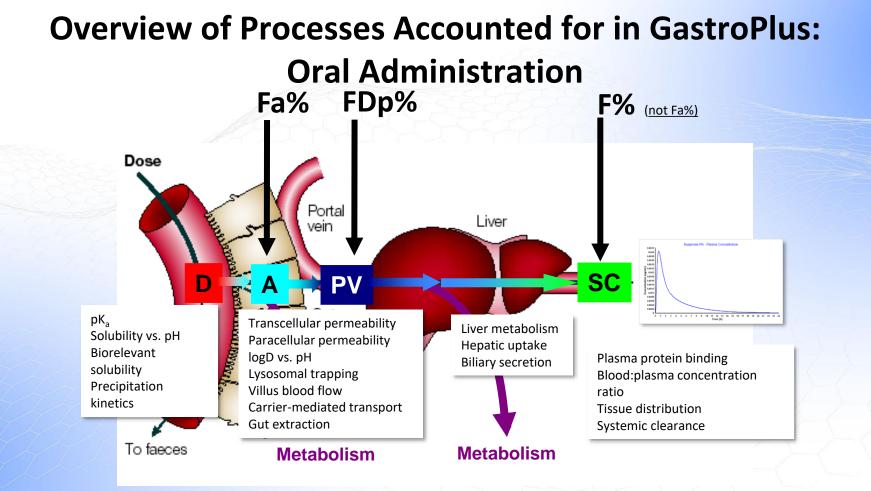

https://blog.knol dus.com/gettingfamiliar-withactivationfunction-and-itstypes

NASDAQ: SLP

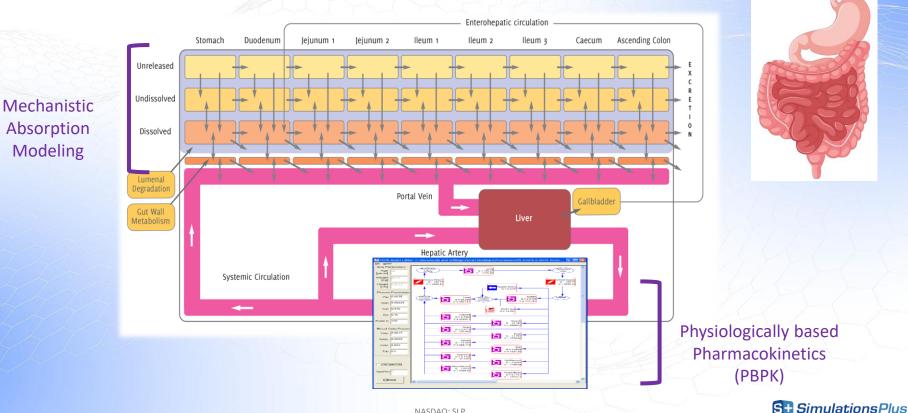
What is PBPK?

- A mathematical modeling approach used to understand drug kinetics in the body (human or animal).
- Drug kinetics are described by the acronym ADMET
 - Absorption
 - Distribution
 - Metabolism
 - Elimination
 - Toxicity

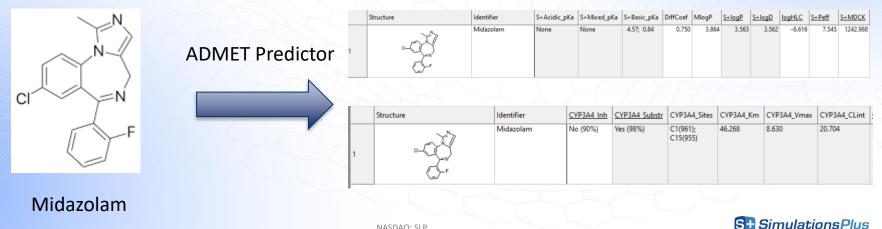
How Are PBPK Models Used in Drug Development?


- Predict the first-in-human dose of a drug
- Predict the effect of a change in drug formulation
- Predict drug kinetics in special populations (e.g., pediatrics, hepatic impairment)
- Predict drug interactions (e.g., other drugs, food)
- Predict an appropriate dosing scheme
- Simulate virtual clinical trials

GastroPlus Software


- GastroPlus is a platform for performing PBPK simulations
- Input various physical chemical properties of the drug (e.g., solubility, permeability, lipophilicity)
- Multiple options for simulated physiology (e.g., monkey, dog, rat, human, fed, fasted)
- Population simulations
- Wide range of drug administration routes (e.g., oral, IV, IM, SQ, pulmonary, ocular)

* Modified from van de Waterbeemd, H, and Gifford, E. *ADMET In Silico Modelling: Towards Prediction Paradise*? Nat. Rev. Drug Disc. 2003, 2:192-204


GastroPlus and Mechanistic Oral Absorption: Advanced Compartmental Absorption and Transit (ACAT) Model

NASDAQ: SLP

ADMET Predictor®

- Machine learning platform to predict ADMET of a drug given its chemical ٠ structure
- Ensemble of neural networks •
- Predictions include uncertainty based on the variance in the neural ۲ networks

ADMET Predictor Independently Shown to Have High Predictive Performance

Table 4. Predictive abilities of some commercially available software for aqueous solubility prediction, based on 122-compound test-set of drugs.

Software	% Compounds predicted within		r2	7		Ref.
Sottware	± 0.5 log unit	± 1.0 log unit	r²	q²	S	Ker.
SimulationsPlus	64.8	91.0	0.82	0.82	0.47	[203]
Admensa	72.1	86.9	0.76	0.74	0.65	[205]
Pharma Algorithms ADME Boxes	59.0	86.9	0.74	0.73	0.62	[206]
ChemSilico	59.8	86.0	0.67	0.65	0.73	[202]
ACDLabs	59.0	85.2	0.73	0.72	0.66	[204]
AlogS	51.6	81.1	0.67	0.66	0.73	[207]
PredictionBase	46.7	81.1	0.48	0.46	1.07	[208]
ESOL	54.9	78.7	0.60	0.59	0.84	[209]
MOLPRO	62.3	77.9	0.44	0.42	1.22	[210]
Absolv 2	44.3	74.6	0.53	0.51	0.95	[206]
QikProp	47.6	73.8	0.57	0.57	0.97	[201]
SPARC*	42.9	73.1	0.73	0.72	0.96	[211]
Cerius ² ADME	37.7	72.9	0.61	0.60	1.02	[212]
WSKOWWIN	41.0	67.2	0.51	0.49	1.17	[213]
ADMEWORKS Predictor	34.4	66.4	0.42	0.39	1.24	[214]
AlogP98	38.5	62.3	0.42	0.40	0.77	[85,212]
CHEMICALC [‡]	23.3	45.7	0.35	0.34	1.96	[215]

*Based on 119 compounds; SPARC could not calculate solubilities of 3 compound	s.
---	----

*Based on 116 compounds, using log P method with calculated melting point, which was not available for 6 compounds; kindly calculated by Prof. G. Schüürmann.

Independent comparison of aqueous solubility predictors

(Dearden JC. Exper. Opin. Drug Discovery 2006 1:31)

Table 2. Perform	ance of algorith	ms					
	Star (23	4)	Nostar	(50)	Zwitter	ions (18)	Other (266)
Method	MAE	Rank	MAE	Rank	MAE	AE	MAE
A_S+logP	0.33	Ι	0.7	Ι	0.4	-0.01	0.4
ALOGPS ³	0.39	Ι	0.7	Ι	0.64	-0.51	0.44
VLOGP ⁴	0.50(0.41)	II	0.95(0.84)	I,III	0.87(0.69)	-0.8(-0.62)	0.56(0.47)
SLIPPER	0.58	II	0.91	I,III	1.2	-1.14	0.6
QikProp	0.58	II	1.01	III	0.83	-0.48	0.64
CSlogP	0.61	II	0.95	I,III	0.54	-0.06	0.68
TLOGP ⁵	0.64	II	1.01	III	1.26	-0.97	0.69
Absolv	0.65	II	0.94	I,III	1.98	-1.97	0.61
QuantlogP ³	0.7	II	1.03	III	1.91	-1.9	0.68
QLOGP	0.72	II	1.19	III	0.9	-0.24	0.79
VEGA ⁶	0.8	Ш	1.07	III	1.53	0.95	0.8
CLIP ⁷	0.82	Ш	1.27	III	1.3	-0.95	0.87
LSER	0.87	Ш	1.26	III	2.32	-2.31	0.84
MLOGP	0.93	Ш	1.12	III	1.64	-1.51	0.92
SPARC ^{8,9}	0.93	Ш	1.17	III	0.72	0.06	0.99
COSMOFrag ³	1.13	III	1.38	IV	2.48	-2.47	1.09
LSER UFZ ⁸	1.19	IV	2.15	IV	2.32	-1.75	1.29
GBLOGP ⁷	1.25	IV	1.76	IV	2.51	2.46	1.26
HINT	1.38	IV	2.14	IV	3.25	-3.24	1.39
AAM	1.37	IV	1.87	IV	2.96		1.36

Independent comparison of logP predictors

(Tetko & Poda, 2007)

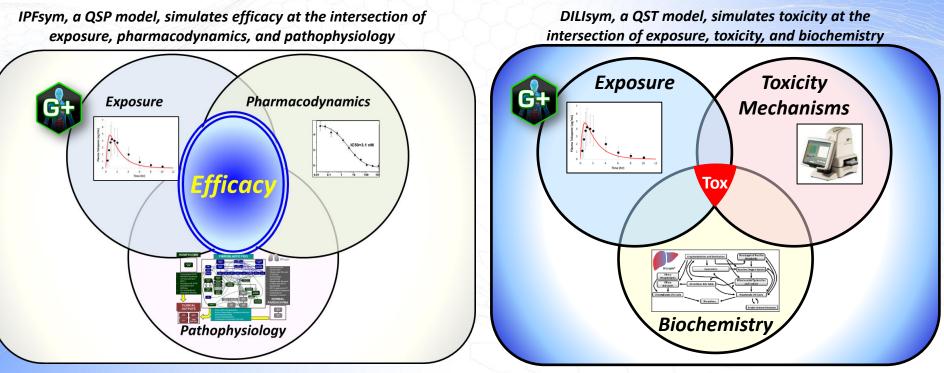
GastroPlus Demo

Introduction to QSP/QST Modeling

Parameter	Telcagepant ^a
Structure ^d	stripped a ct workshop
Potency IC ₅₀ e	2.2 nM
Pivotal conventional nonclinical toxicology study liver findings	 3M rat: <3 × ALT/AST with no liver histopathology at 15× exposure margin 6M rat: no liver safety signal at 7x margin 9M NHP: no liver safety signal at 7× margin 6M mouse: <2 × ALT/AST with no live histopathology at 14× margin

Parameter	Telcagepant ^a
Structure ^d	epipode of notification
Potency IC ₅₀ e	2.2 nM
Pivotal conventional nonclinical toxicology study liver findings	3M rat: <3 × ALT/AST with no liver histopathology at 15× exposure margi 6M rat, no liver safety signal a 7x margin 9M NHF no liver safety signal at 7× margin 6M mouse: <2 × ALT/AST with no live histopathology at 14× margin

Parameter	Telcagepant ^a	MK-3207 ^b
Structure ^d		Istuado Ist
Potency IC ₅₀ ^e	2.2 nM	0.12 nM
Pivotal conventional nonclinical toxicology study liver findings	 3M rat: <3 × ALT/AST with no liver histopathology at 15× exposure margin 6M rat: no liver safety signal at 7x margin 9M NHP: no liver safety signal at 7× margin 6M mouse: <2 × ALT/AST with no liver histopathology at 14× margin 	6M ret: no liver safety signal at 25× exposure margin 9M NHF: no liver safety signal at 4× margin 6M mouse no liver safety signal at 4× 12× margin 1M dog: slight periportal vacuolation with <4 × ALT/AST associated with excessive body weight loss at 17x margin



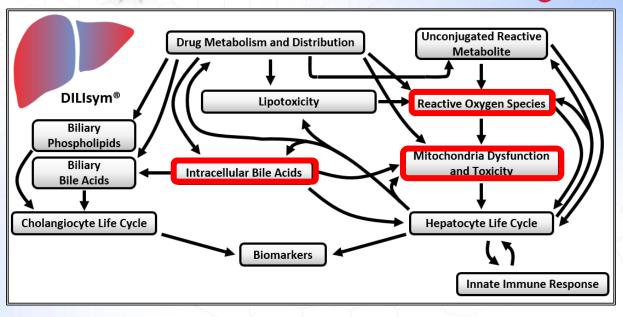
Parameter	Telcagepant ^a	MK-3207 ^b	Ubrogepant ^c
Structure ^d	epipoda of notification	dinnergound http://www.endoreductionstation	F,C C
Potency IC ₅₀ e	2.2 nM	0.12 nM	0.08 nM
Pivotal conventional nonclinical toxicology study liver findings	3M rat: <3 × ALT/AST with no liver histopathology at 15× exposure margin 6M rat: no liver safety signal at 7x margin 9M NHP: no liver safety signal at 7× margin 6M mouse: <2 × ALT/AST with no liver histopathology at 14× margin	6M rat: no liver safety signal at 25× exposure margin 9M NHP: no liver safety signal at 4× margin 6M mouse: no liver safety signal at 12× margin 1M dog: slight periportal vacuolation with <4 × ALT/AST associated with excessive body weight loss at 17x margin	6M rat: <2 × ALT with no liver histopathology at 70× exposure margin 9M NHF no liver safety signal at 163× margin 3M mouser no liver safety signal at 80× margin

What is QSP/QST?

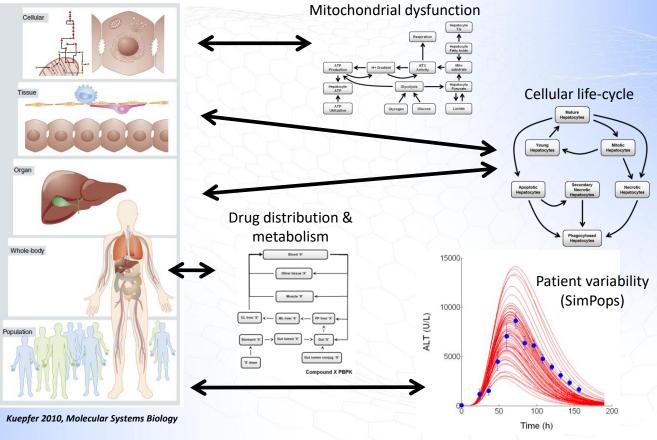
 QSP/QST applies a systems-level, mechanistic representation of drug interaction with normal or disease physiology to retrospectively interpret clinical data and to prospectively predict efficacy (QSP) or safety (QST)

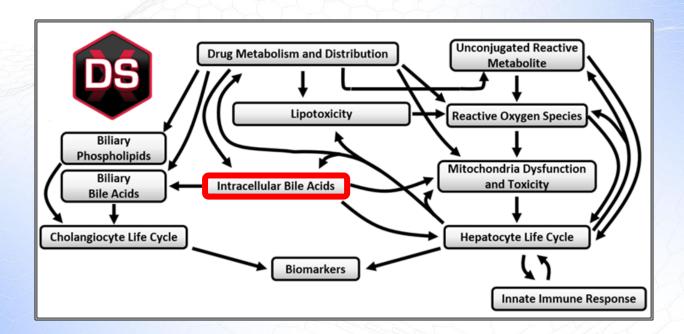
How Are QSP/QST Models Used in Drug Development?

- Predict treatment efficacy
- Predict comparative efficacy against standards of care
- Predict clinical efficacy of combination therapies
- Predict optimal dosing regimen
- Predict mechanistic underpinnings of response / non-response
- Predict biomarkers of response
- Predict potential response variability in human populations

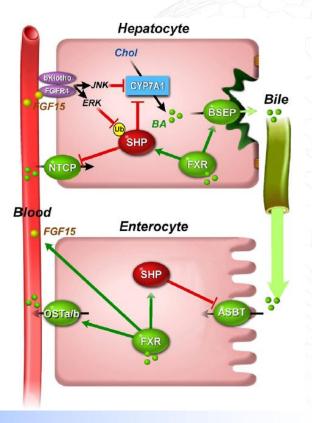

- Retrospectively identify key mechanistic drivers of clinically observed toxicity
- Predict treatment toxicity
- Prospectively identify key mechanistic drivers of predicted toxicity
- Predict safe dosing regimen
- Predict biomarkers of toxicity response
- Predict response variability in human populations

DILIsym Software Overview

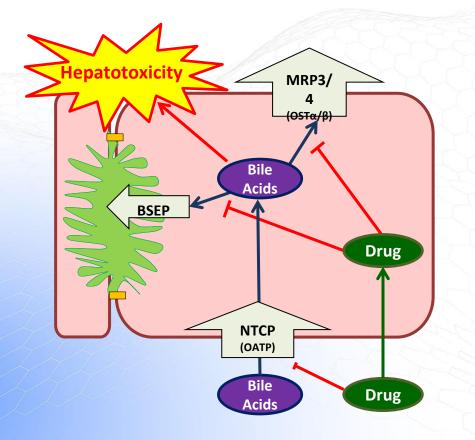

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented
- Essential cellular processes represented to multiple scales in interacting submodels
- <u>Over 80</u> detailed representations of optimization or validation compounds with ~80% prediction success
- Single and <u>combination drug</u> therapies



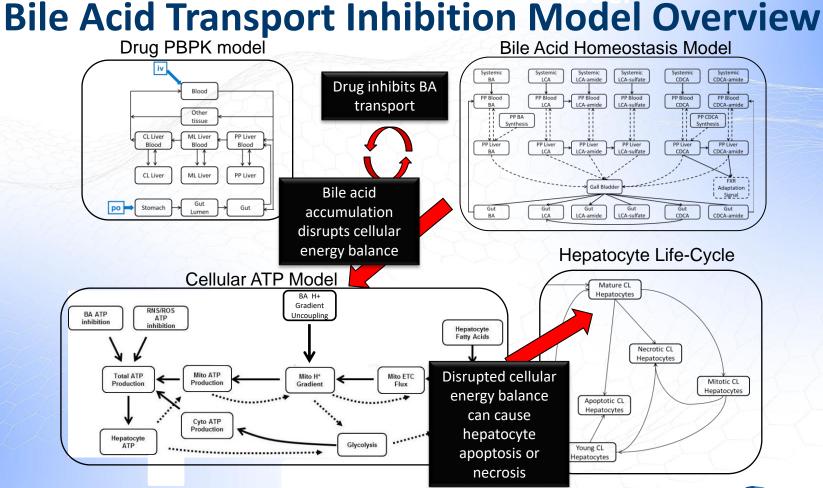
DILIsym: Quantitative Systems Toxicology



Toxicity Mechanism: Bile Acid Transporter Inhibition


Bile Acids Undergo Efficient Enterohepatic Recirculation Mediated by Transporters

- Bile acids are synthesized in the liver and transported into the bile by BSEP
- In humans, bile acids are stored in the gall bladder until meal time
 - Rats do not have a gall bladder
- Bile acids are taken up by enterocytes and return to the portal blood
- Hepatocytes take up bile acids, mediated by NTCP
- MRP3/4 can transport bile acids from hepatocyte to blood
- Bile acids are presumed to be concentrated in the periportal region of the liver

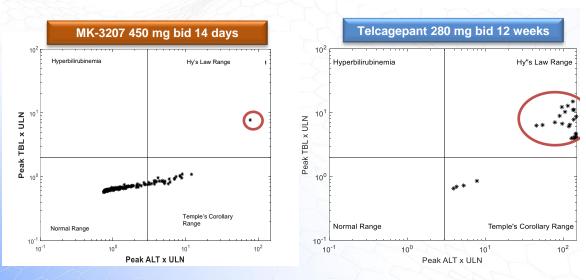

Drugs Can Inhibit Bile Acid Transporters

- Drugs can interfere with multiple bile acid transport processes such as uptake, canalicular efflux, and basolateral efflux
- Research has shown a relationship between bile acid efflux transporter inhibition and toxicity ‡
- Drug effects on hepatobiliary bile acid disposition can be simulated using data from in vitro transport assays
 - Inhibition constants (e.g., IC50, Ki)
 - Type of inhibition (e.g., competitive, noncompetitive)

[‡] Morgan 2013, Pedersen 2013, Dawson 2010, Morgan 2010

Parameter	Telcagepant ^a	MK-3207 ^b	Ubrogepant ^c
Structure ^d	epipoda d'inditation	HN H H H H H H H H H H H H H H H H H H	F,C C
Potency IC ₅₀ e	2.2 nM	0.12 nM	0.08 nM
Pivotal conventional nonclinical toxicology study liver findings	 3M rat: <3 × ALT/AST with no liver histopathology at 15× exposure margin 6M rat: no liver safety signal at 7x margin 9M NHP: no liver safety signal at 7× margin 6M mouse: <2 × ALT/AST with no liver histopathology at 14× margin 	6M rat: no liver safety signal at 25× exposure margin 9M NHP: no liver safety signal at 4× margin 6M mouse: no liver safety signal at 12× margin 1M dog: slight periportal vacuolation with <4 × ALT/AST associated with excessive body weight loss at 17x margin	6M rat: <2 × ALT with no liver histopathology at 70× exposure margin 9M NHP: no liver safety signal at 163× margin 3M mouse: no liver safety signal at 80× margin

DILIsym Toxicity Parameters for Telcagepant, MK-3207 and Ubrogepant


Mechanism	DILIsym Parameter	Unit	DILIsym Parameter Value***			
Wechanism	Dicisyin Parameter	Onit	telcagepant	MK-3207	Ubrogepant	
	Coefficient for ETC inhibition 1	μΜ	17,400	N/A	472	
Mitochondrial Dysfunction	Coefficient for ETC inhibition 3	μΜ	N/A	0.347	N/A	
	Max inhibitory effect for ETC inhibition 3	dimensionless	N/A	0.35	N/A	
Oxidative Stress	RNS/ROS production rate constant 1	mL/nmol/hr	2.0 x 10 ⁻⁵	2.2 x 10 ⁻⁴	1.6 x 10 ⁻⁴	
	BSEP inhibition constant	μΜ	7.9	7.62	38.1	
Bile Acid	BSEP inhibition alpha value	dimensionless	4.6	Competitive	8.39	
Transporter Inhibition	NTCP inhibition constant	μΜ	19.4	No Inhibition	No Inhibition	
	MRP3/4 inhibition constant**	μΜ	16.6	49.9	85.9	

*Values shown in the table for DILIsym input parameters should not be interpreted in isolation with respect to clinical implications, but rather, should be combined with exposure in DILIsym to produce simulations that have predictive and insightful value
**Mixed inhibition with alpha = 5 assumed

Smith et al., Tox Sci 2020

eDISH Plots Simulated by DILIsym Show Predicted Hy's Law Cases for MK-3207 and Telcagepant

NASDAQ: SLP

Original Article

Cephalalgia

International

Safety and tolerability of ubrogepant following intermittent, high-frequency dosing: Randomized, placebo-controlled trial in healthy adults

Peter J Goadsby¹, Stewart J Tepper², Paul B Watkins³, Girma Ayele⁴, Rosa Miceli⁴, Matthew Butler⁴, Lawrence Severt⁴, Michelle Finnegan⁴, Armin Szegedi⁴, Joel M Trugman⁴ and Abhijeet Jakate⁴

Table 3. Hepatic laboratory parameters.

	Placebo (n = 260)	Ubrogepant 100 mg (n = 256)	
ALT, U/L	n=258	n = 256	- 2
Baseline, mean (SD)	20.5 (7.2)	21.1 (9.1)	5
End of trial, mean (SD)	21.7 (7.7)	21.3 (8.7)	
Change from baseline, mean <mark>(</mark> SD)	1.2 (7.4)	0.1 (8.4)	
Post baseline \geq 3 \times ULN, n (%)	3 (1.2)	2 (0.8)	

Cephalalgia 2019, Vol. 39(14) 1753–1761 © International Headache Society 2019

Artide reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0333102419869918 journals.sagepub.com/home/cep

SAGE

Conclusion

DILIsym modeling was part of the weight of evidence that <u>supported FDA approval</u> of Ubrogepant for the treatment of acute migraine headaches.

CENTER FOR DRUG EVALUATION AND RESEARCH

APPLICATION NUMBER:

211765Orig1s000

NON-CLINICAL REVIEW(S)

In the <u>investigative hepatotoxicity assays</u> using HepG2 (human hepatocellular carcinoma) cells and HepaRG spheroids (a metabolically active system) and a proprietary in silico analysis system, the effects of ubrogepant were compared to those of two other CGRP receptor antagonists, for which development was discontinued because of hepatotoxicity. The results indicated that ubrogepant inhibited bile acid transporters, inhibited HepG2 oxygen consumption rate in a concentration-dependent manner (suggesting the potential to induce mitochondrial toxicity), and exhibited "a modest induction of oxidative stress in HEPG2 cells," considered an effect of ubrogepant itself rather than metabolite(s). Based on "Eight different clinical protocols of ubrogepant...investigated in <u>SimPops</u>," the sponsor concluded that ...despite in vitro results, no ALT elevations were predicted for any of the protocols tested...indicating that ubrogepant would be safe at doses up to 10-fold higher than the clinical dose in the hepatic safety clinical study (dosing 100 mg 2 days on, 2 days off for 56 days, 28 total doses)." The maximum recommended clinical dose for the proposed indication (acute migraine) is 200 mg/day, suggesting a 5-fold safety margin with a similar dosing regimen.

DILIsym Services QSP/QST Platforms

	Model	Disease area	Key References	Primary biomarkers included:	Number of compounds/ targets evaluated
	NAFLDsym	Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis	Kenz 2020, Kenz 2019, Longo 2018, Siler 2018, Siler 2022	Histologic NAS, histologic fibrosis score Liver fat (MRI), plasma ALT	25-30
	IPFsym	Idiopathic pulmonary fibrosis	Siler 2021	Forced vital capacity; high resolution computed tomography	6
	ILDsym	Interstitial lung disease	Kenz 2022	Forced vital capacity; high resolution computed tomography	5
QSP	CARDIOsym	Cardiac recovery following myocardial infarction	Kenz 2021	Cardiomyocytes, myofibroblasts, collagen	2
	KIDNEYsym	Kidney diuresis		Urine volume; urinary sodium loss	3
	GOUTsym	Gout Emphasis on hyperuricemia		Uric acid	5
	MITOsym	Hepatocyte bioenergetics	Yang 2015	Oxygen consumption rate; ATP concentrations	>70
QST	DILIsym	Drug induced liver injury	Shoda 2017, Battista 2020, Eichenbaum 2020	Plasma ALT, plasma AST, plasma bilirubin	>70
	RENAsym RENAsym	Drug induced kidney injury	Gebremichael 2020	Urine KIM-1, urine α GST, serum creatinine	10

DILIsym Demo

University+

Modeling and simulation (M&S) education today to set the next generation of scientists up for success tomorrow.

One-year access

to Simulations Plus software to students and educators at accredited universities worldwide

Training and Workshops

Simulations Plus hosts a variety of learning opportunities to help further your modeling and simulation research

User Support

Free videos, webinars, and open-source publications – highlighting best practices, case studies, and step-by-step tutorials

Utilized by Educators Worldwide

Providing accredited university professors with free access to the software, we are able to drive M&S learning and understanding prior to entering the workforce.

Free & paid courses

Membership pricing to government agencies

Apply Today