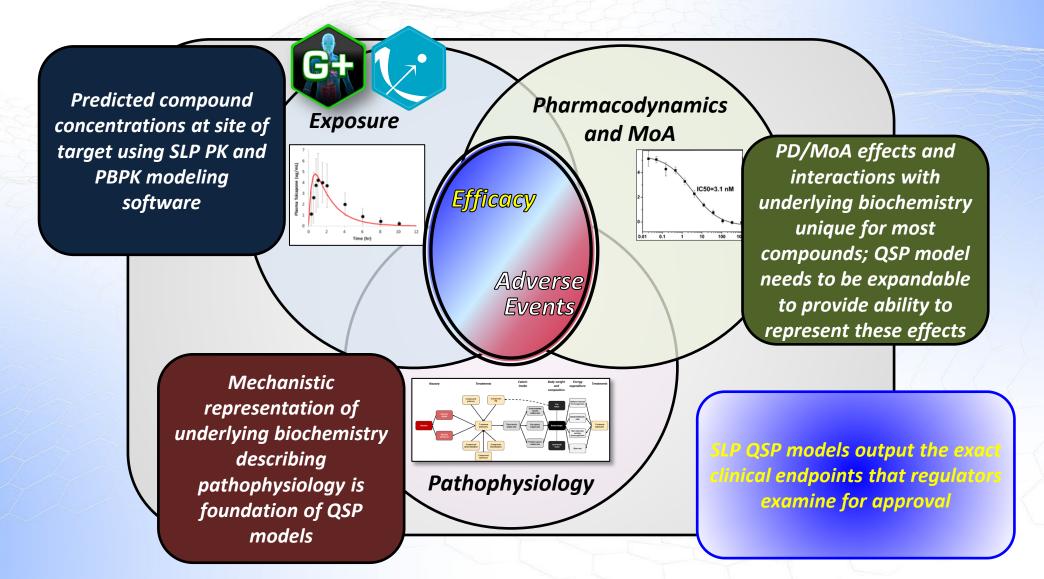


St SimulationsPlus

Thales: A unified framework for clinical-scale QSP modeling


© Copyright 2024, Simulations Plus, Inc. All Rights Reserved. | NASDAQ: SLP | CONFIDENTIAL

Disclaimer: Simulations Plus QSP Services are developed and provided as an educational tool based on assessment of the current scientific and clinical information, and accepted approaches for drug safety and efficacy. The resultant data, suggestions, and conclusions ("Guidelines") should not be considered inclusive of all proper approaches or methods, and they cannot guarantee any specific outcome, nor establish a standard of care. These Guidelines are not intended to dictate the treatment of any particular patient. Patient care and treatment decisions should always be based on the independent medical judgment of health care providers, given each patient's individual clinical circumstances.

ADMET Predictor[®], Cognigen[®], DILIsym[®], GastroPlus[®], ILDsym[®], IPFsym[®], Lixoft[®], MITOsym[®], Monolix[®], NAFLDsym[®], PKanalix[®], RENAsym[®], SimPops[®], Simulx[®], Sycomore[®], S+, ●P, & are registered trademarks, and ADMET Modeler[™], CARDIOsym[™], COMPLEMENTsym[™], DDDPlus[™], GOUTsym[™], GPX[™], Immunetrics[™], INIVCPlus[™], MedChem Designer[™], MedChem Studio[™], MembranePlus[™], MonolixSuite[™], PBPKPlus[™], PDPlus[™], PKPlus[™], SimCohorts[™], & Thales[™] are trademarks of Simulations Plus, Inc.

Predicting Clinical Efficacy in QSP

Unifying our approach

- Historically, we have used multiple tools chained together
 - This introduces a degree of fragility in the computational pipeline
- From a consulting perspective, QSP modeling should balance both scientific and economic needs
 - Better would be a "1-stop shop" for QSP modeling for this application
 - Visualization of model components is one aspect with high potential to accelerate QSP workflows

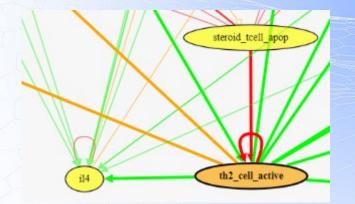
THALES T

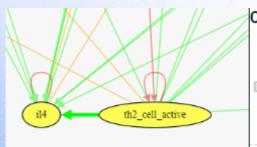
An integrated system for all stages of model development: model design, implementation, fitting, debugging, analysis, prediction

VISUALIZATION TO SUPPORT KNOWLEDGE TRANSFER

Standardized model development in Thales

- Thales standard objects for model building are called "primitives"
 - They lower the barrier to entry and facilitate knowledge transfer
 - They enable automation for modeling workflows
- Biological processes
 - The pre-built primitives define a set of objects designed for accessibility
- Dosing regimens
 - The "Scenario" primitive defines a specific simulation segment and hooks for automatic integration of data


IL17 cytokine dynamics - !Creates input_names: conc_th17_cell_active output_name: il17 modulating_terms: il10_inh_th1_th17 track_component_name: th17_cell_produces


- !Scenario	
<pre>key_tuple: [adalimumab, adalimumab, 40mg]</pre>	
times: !FloatRange	
start: 0	
end: 112	
step: 7	
event_specs:	
- !ScheduledEventSpec	
description: AddAda40mg	
map_time_to_set_expressions:	
CentralSerumadalimumab_sc: 40 * CentralSerumada_sc_bio	availability

Network visualization

- Standard objects enable automated network visualization
 - Nodes are species and edges are processes defined by Thales primitives
 - The diagram is automatically generated from the objects' metadata

Creates - th2_produce_il4

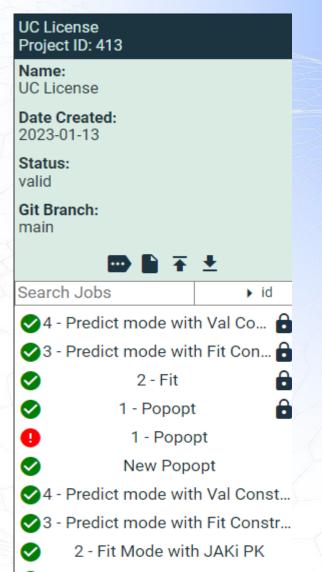
input_names: th2_cell_active modulating_terms: il10_inh_th2_th22,pime_th output_name: il4 reaction_name: th2_produce_il4 tag: th2_produce_il4 track_component_name: th2_produce

Parameters

k__il4__th2_cell_active:

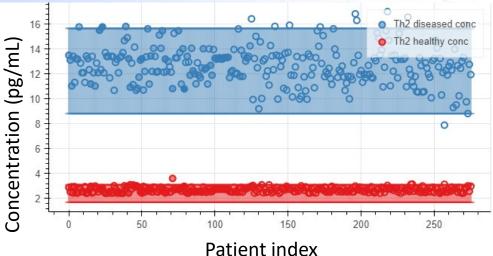
name: k_il4_th2_cell_active LOCAL unit: PG / (CELL * DAY) value: AssignUnits(2e-4, PG / (CELL * DAY))

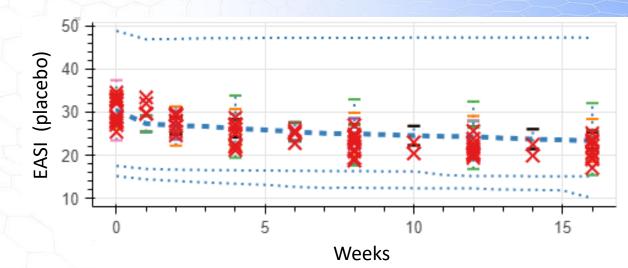
- Interactivity is supported and provides links to model code (left)
 - The resulting graph is useful for targeted learning or reference for users unfamiliar with Thales code


VISUALIZATION TO SUPPORT MODEL REVIEW

Accessibility and reproducibility

- Thales provides a project-level interface designed to be sufficiently accessible for both novice and expert QSP modelers
- Reproducibility and transference/sharing of results between projects and users is a core feature
 - Model state is retained by default
 - Projects can be shared in a read-only mode
 - These include code, results and graphs





S+ SimulationsPlus

Visualization (plotting results)

- Visualization for simulation analysis
 - Standard graphs and calculations are provided
 - A plotting API is provided for more advanced, custom analyses
- Customizable plot types include
 - Timecourses
 - Individual patient distributions
 - Qualitative pass/fail checks
- Thales workflows enable rapid feedback for optimization jobs

Left:

The graph shows expected ranges for Th2 levels in healthy patients (red) and AD patients (blue)

- Circles: values at baseline per patient
- Shaded regions: Valid range for

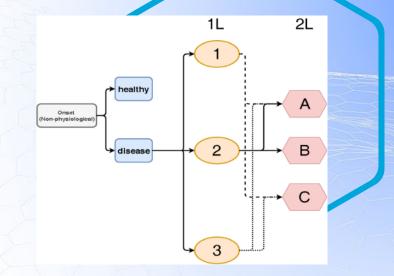
specific model value informed by data

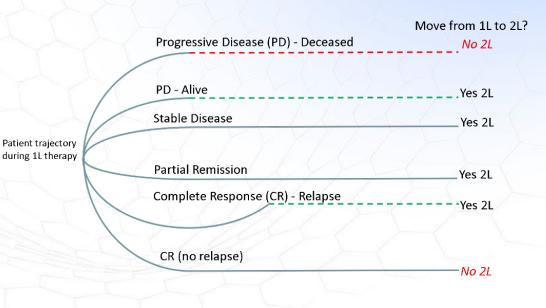
Above:

The shown timecourse contains both simulated and actual data:

- Red X: population means from clinical data
- Bold blue dashed line: SimPop weighted mean
- Blue dotted lines: 1st, 2nd, and 3rd quartiles
- Error bars: 90% confidence interval for model mean

VISUALIZATION TO SUPPORT MODEL EXPANSION

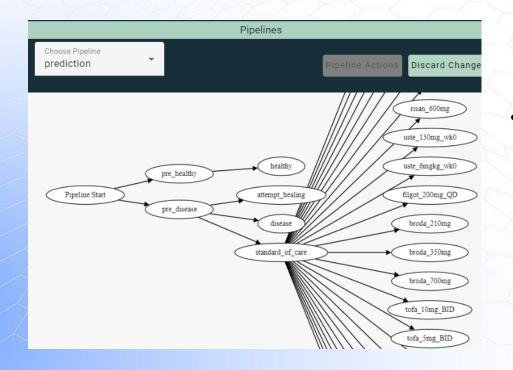

Simulating Disease Progression and Treatments


Thales enables straightforward specification of increasingly complex disease progression pipelines

- The diagram shows a typical IO model pipeline with scenarios representing disease onset, first line therapies, and second line therapies
- Note that patients in distinct first line therapies can enter the same second line therapy
- Thales "stage" objects enable users to easily control the flow of virtual patients between different stages

Example: Cancer therapies

- Patient treatments often depend on response to prior therapies or patient features (e.g. specific cancer genotypes)
- Thales automatically manages which patients are allowed into which scenarios
- Visualizing the pipeline facilitates insertion of new scenarios into the correct locations



Visualization (new predictions)

- Thales provides a graphical interface to easily add new simulation scenarios for an existing SimPop (right)
 - Scenarios or stages can be added or edited, to represent new dosing regimens or trial protocols

- Visualization of the simulation pipeline facilitates placement of new stages
 - Placement of a late-line regimen may have early-line dependencies
 - Patients move through all paths in the tree unless filtered out by trial protocols

saved:		No	
itted: 9:5		Stage name: certo_400mg_0_2_4_then_q4w	
	Edit Stage Definition - certo_400mg_0_2_4_then_q4w		
let∉ 10:	Name:	Name certo_400mg_0_2_4_the	
•	Descript	ion: Description	
L	Scenario	:[Certolizumab 400mg wk 0, 2, 4, then Q4W, Certolizumab, 40	
L	Use stag	ge criteria:	
	Sequenc	Sequence criteria	
L	Abort cr	Abort criteria	
s:)5	Post sin	Post sim transforms:	
00		Transform	
	×	PredictorOutputs	
0b	×	CalculateCustomClinicalOutputs	
- 2	1		

Conclusions & Acknowledgments

- Our experience with Thales at Simulations Plus highlights the utility of visual features and graphical interfaces in modeling workflows
 - Visual representation of models facilitate knowledge transfer/retention
 - Graphical interfaces assist with model accessibility
 - Graphical tools enable the practical use of QSP models without the need for mathematical or computational expertise
- Thales provides many other integrated features for QSP modeling outside of visualization that we are happy to discuss in person

Both Steven Chang and John Bartels conceived of Thales as a tool for QSP modeling.

