Abstract
The aim of this present study was to establish a new in vitro assay, double artificial membrane permeation assay (DAMPA), to evaluate the human intestinal permeability of drugs. A double artificial membrane with an intracellular compartment was constructed in side-by-side chambers by sandwiching a filter containing buffer solution with impregnated lipophilic filters with dodecane containing 2w/v% phosphatidylcholine. Permeation data of ionic compounds clearly indicated that not only the pH value of the apical solution but also that of the intracellular compartment affected the permeability across the double artificial membrane. DAMPA was performed with 20 compounds at physiological pH (apical; 6.5, intracellular and basal; 7.4). Paracellular and transcellular permeabilities of compounds in human epithelium were estimated based on the characteristics of the paracellular pathway using physicochemical properties of compounds with the Renkin function and the area factor i.e. the difference in the effective surface area between human epithelium and the double artificial membrane, respectively. The human intestinal permeability of each compound was predicted by the sum of estimated transcellular and paracellular permeabilities. Predicted human intestinal permeability was significantly correlated with the fraction of absorbed dose in humans, indicating that DAMPA has the potential to predict oral absorption of drugs in humans.