Evaluation of hypothesis Testing for comparing two populations using NONMEM analysis

Publication: J Pharmacokinet Biopharm

Abstract

In a simulation study of inference on population pharmacokinetic parameters, two methods of performing tests of hypotheses comparing two populations using NONMEM were evaluated. These two methods are the test based upon 95% confidence intervals and the likelihood ratio test. Data were simulated according to a monoexponential model and, in that context, power curves for each test were generated for (i) the ratio of mean clearance and (ii) the ratio of the population standard deviations of clearance. To generate the power curves, a range of these parameters was employed; other pharmacokinetic parameters were selected to reflect the variability typically present in a Phase II clinical trial. For tests comparing the means, the confidence interval tests had approximately the same power as the likelihood ratio tests and were consistently more faithful to the nominal level of significance. For comparison of the standard deviations, and when the volume of information available was relatively small, however, the likelihood ratio test was more able to detect differences between the two groups. These results were then compared to results on parameter estimation in order to gain insight into the question of power. As an example, the nonnormality of estimates of the ratio of standard deviations plays an important role in explaining the low power for the confidence interval tests. We conclude that, except for the situation of modeling standard deviations with only sparse information, NONMEM produces tests of significance that are effective at detecting clinically significant differences between two populations.

By White DB, Cindy Walawander, Liu, D.Y., Thaddeus Grasela.