A critical review on approaches to generate and validate virtual population for physiologically based pharmacokinetic models: Methodologies, case studies and way forward

Publication: Eur J Clin Pharmacol
Software: GastroPlus®
Division: PBPK

Abstract

Purpose

In silico modeling and simulation techniques such as physiologically based pharmacokinetic (PBPK) and physiologically based biopharmaceutics modeling (PBBM) have demonstrated various applications in drug discovery and development. Virtual bioequivalence leverages these computation tools to predict bioequivalence between reference and test formulations thereby demonstrating possibilities to reduce human studies. A pre-requisite for virtual bioequivalence is development of validated virtual population that depicts the same variability as that of observed in clinic. This development, validation and optimization of virtual population is a key attribute of virtual bioequivalence based on which conclusion of bioequivalence is made.

Methods

Various strategies for optimization of virtual population based on appropriate considerations of physicochemical, physiological and disposition aspects are demonstrated with the help of six diverse case studies of immediate and modified release formulations. Once the virtual population is optimized to match in vivo variability, it can be used for various applications such as biowaivers, dissolution specification justification, f2 mismatch, establishing dissolution safe space, etc. In this review article, we attempted to describe various methodologies and approaches for optimization of virtual population using Gastroplus.

Results

Strategies based on optimization of virtual population with emphasis on specific and sensitive parameters were portrayed. We have further elucidated considerations related to study design, in vivo variability, sample size for optimization of virtual population from Gastroplus perspective.

Conclusion

We believe that this review article provides a step-by-step process for virtual population optimization for interest of biopharmaceutics modeling scientists in order to ensure reliable and credible physiological models.

By Mahendra Chougule, Sivacharan Kollipara, Smritilekha Mondal & Tausif Ahmed