Molecular docking, binding mode analysis, molecular dynamics, and prediction of ADMET/toxicity properties of selective potential antiviral agents against SARS-CoV-2 main protease: an effort toward drug repurposing to combat COVID-19

Publication: Mol Divers
Software: ADMET Predictor®

Abstract

The presence of pharmaceutically active substances (PhACs) in aquatic ecosystems is of great concern due to their constant occurrence in different water systems and potential negative effects on the quality of water and living organisms. After consumption, PhACs are excreted as the parent compound, and/or as free or conjugated metabolites, which might finally arrive to surface and ground waters after their incomplete removal (and possible degradation) in the wastewater treatment plants (WWTP). A large amount of data about parent PhACs in water has been reported in the literature in the last decade; however, there is a lack of information about the presence of their metabolites and transformation/degradation products (TPs). Recent publications report that PhACs found in water are only the “top of the iceberg” in relation to the environmental impact associated to the consumption of PhACs. From a scientific-technological point of view, the overall study of PhACs is a challenge and requires to advance with respect to current knowledge and analytical capacities, considering several key aspects, such as the reliable identification and quantification of the compounds, the improvement of the removal efficiency by the WWTPs, the study of their behaviour in the environment (e.g. persistence and biodegradability), and the environmental risk assessment, considering not only the parent PhACs but also their transformation/metabolism products. In this work, it is intended to delve into this problem, presenting a detailed overview on metabolites and TPs of PhACs in environmental waters from the Mediterranean area. Analytical and environmental problems associated to the determination of these compounds are briefly commented, ending the paper with the main conclusions and expected future trends in relation to this field.

By Himanshu Rai, Atanu Barik, Yash Pal Singh, Akhil Suresh, Lovejit Singh, Gourav Singh, Usha Yogendra Nayak, Vikash Kumar Dubey & Gyan Modi